
4

Programming in the MAXQ
environment
The MAXQ architecture was developed for application programmers. Each MAXQ microcontroller
includes a hardware debug engine that is tightly integrated with the microcontroller core. The first
chip in this architecture is the MAXQ2000, and this article provides examples and tips on the use of
the IAR Embedded Workbench with the MAXQ2000 Evaluation Kit.

The in-circuit debugging and program-loading features of the MAXQ2000 microcontroller
combine with IAR’s Embedded Workbench development environment to provide C or assembly-
level application development and testing. The hardware-based debug engine and bootloader of
the MAXQ2000 run over a dedicated JTAG port to allow full debugging access with minimal
impact on system resources.

In-circuit debug features

A hardware debug engine, which is tightly integrated with the microcontroller core, controls
the MAXQ2000’s debugging features. This debug engine can invoke service routines in the
on-board utility ROM to support a wide array of debugging features.

• Read access to the integrated flash program memory.

• Read/write access to the on-board data SRAM.

• Read access to the 16 x 16 stack memory.

• Read/write access to all MAXQ2000 system and peripheral registers.

• Step-by-step (trace) program execution.

• Up to four address-based breakpoints to stop program execution at a particular location in code
memory.

• Two data memory-matching breakpoints to stop program execution when a particular location
in data memory is accessed.

• Two register-based breakpoints to stop program execution when write access to a particular
system or peripheral register occurs (cannot be used simultaneously with the data memory
matching breakpoint) and the data being written to the register matches a specified value.

• Password matching function (to unlock the remaining debug functions).

All communication with the debug engine takes place over the MAXQ2000’s dedicated JTAG
Test Access Port (TAP) interface, which is compatible with the JTAG IEEE Standard 1149. This
interface consists of four signals, multiplexed with MAXQ2000 port pins as follows: TMS (Test
Mode Select)—multiplexed with P4.2; TCK (Test Clock)—multiplexed with P4.0; TDI (Test
Data In)—multiplexed with P4.1; and TDO (Test Data Out)—multiplexed with P4.3.

While the JTAG TAP port is dedicated to in-system debug and in-system programming uses, the
four port pins that carry the JTAG TAP port signals may be released for other purposes once
application development is complete. The JTAG port is active by default following reset, but
once running, the application software can deactivate the JTAG port, leaving the four associated
port pins free for other uses.

The JTAG interface and the debug engine operate asynchronously with respect to the
MAXQ2000 core. Communication over the JTAG port need not take place at the same clock rate
that the MAXQ2000 is running, although the frequency of TCK is limited to a maximum of 1/8
the system clock rate for the MAXQ2000.

The in-circuit debugging
and program-loading
features of the
MAXQ2000 micro-
controller combine with
IAR’s Embedded Work-
bench development
environment to provide
C or assembly-level
application develop-
ment and testing.

All communication with
the debug engine takes
place over the
MAXQ2000’s dedicated
JTAG TAP interface,
which is compatible
with the JTAG IEEE
Standard 1149.

5

Breakpoint settings can be read and written through the debug engine while the MAXQ2000 is
executing code. This mode is known as background mode, where the debug engine operates
independently of the CPU core.

To perform other operations such as memory and register read and write, the debug engine takes
control of the MAXQ2000 core, and switches execution to one of the debug service routines
located in the utility ROM. This mode is known as debug mode, in which the debug engine
interrupts normal program execution. The user application is suspended temporarily in these
cases and resumes execution once the debug function has been completed, in the same way that
interrupt routines are handled.

Because the JTAG TAP port is not used for application software purposes, the port pins
comprising the JTAG port can be reclaimed by the application software. All additional code
required for debugging functions is located in the utility ROM, so the only system resources
consumed by the debugging functions are a small amount of data SRAM and one level of the
program stack (used to store the return address when a debugging routine is called). The highest
19 bytes of data SRAM (addresses 0x07ED to 0x07FF) are reserved for use by the debugging
service routines. If in-circuit debugging will not be used for a particular application, these data
SRAM locations are available for application use.

Integrated flash-memory programs over JTAG

The JTAG TAP port is also used for an additional bootloader function, which is available even
if the debugging functions will not be used. By setting three configuration bits over the JTAG
TAP interface and then releasing the MAXQ2000 from reset, control can be transferred to the
built-in bootloader routines located in the utility ROM. The configuration bits that control access
to the bootloader are as follows.

• SPE: System Program Enable Bit (ICDF.1). When this bit is set to 1, the MAXQ2000 executes
the bootloader routine in the utility ROM following system reset.

• PSS[1:0]: Programming Source Select (ICDF.3-2). The settings of these bits determine
whether the JTAG port (PSS[1:0] == 00b) or the serial 0 UART (PSS[1:0] == 01b) is used for
bootloader communication.

Once these bits are set and the MAXQ2000 is released from reset, the utility ROM bootloader
begins communicating with the host system over the selected port (JTAG or serial 0 UART). In
either case, the protocol used is the same and provides the following functions.

• Reads the ID banner of the MAXQ2000 (identifies utility ROM version).

• Returns the size of internal program and data memory.

• Reads, writes, verifies, and CRCs the integrated flash program memory.

• Reads, writes, verifies, and CRCs the internal data SRAM.

• Password matches (to unlock memory read and write commands).

While the bootloader can communicate over the serial 0 UART instead of the JTAG port, the
JTAG interface must be used to place the bootloader into serial communications mode. However,
the application software can also invoke the bootloader in serial communications mode by setting
the SPE and PSS bits appropriately, then resetting the MAXQ2000 (by letting the watchdog timer
expire or by external hardware means). The method for causing the bootloader to be invoked (such
as a signal on a port pin) must be determined by the application software.

A hardware debug
engine, which is tightly
integrated with the
microcontroller core,
controls the MAXQ2000’s
debugging features.

By setting three
configuration bits over
the JTAG TAP interface
and then releasing the
MAXQ2000 from reset,
control can be trans-
ferred to the built-in
bootloader routines
located in the utility
ROM.

6

Password protection for debug and bootloader functions

A basic password-protection scheme restricts access to the debugging and bootloader functions
on the MAXQ2000. This password must be provided by the host system before access is allowed
to any functions that read or modify the contents of memory or system and peripheral registers.

The password is 16 words or 32 bytes long. The value for the password is located in the internal flash
memory at word locations 0x0010 to 0x001F. These values can be included in an application as a
static array, or they can simply be the values of the instruction codes stored in those locations. Either
way, the password is automatically written when the application is loaded. If no application has been
loaded, the password will be a default value with all words equal to 0xFFFF.

Even if the password is not known, the MAXQ2000’s internal flash memory can always be
erased through the bootloader. This effectively clears the password value (to all 0xFFFF words)
and allows other programming and debugging operations to proceed. The password protection
simply ensures that existing code may not be read from the MAXQ2000 without first matching
the 32-byte password value.

Using the serial-to-JTAG adapter module

Integrated development environments for the MAXQ2000 microcontroller (such as MAXIDE
and IAR Embedded Workbench) include software libraries to support communication with the
MAXQ2000 JTAG interface. However, as the PCs running this software do not typically have
JTAG ports included, a hardware layer is needed to interface the two systems.

The serial-to-JTAG adapter module, included with the MAXQ2000 Evaluation Kit, provides a
turnkey solution to this interface problem (Figure 1). Software running on the PC (such as IAR
Embedded Workbench) communicates with the serial-to-JTAG adapter module over a standard
COM serial port. The serial-to-JTAG adapter module then interfaces to the JTAG port of the
MAXQ2000, passing commands to the bootloader or the debugging engine. The adapter module
also handles level translation and supports MAXQ microcontrollers running over a range of
different supply voltages, as well as removes the need for the PC to provide precise timing for
the JTAG waveforms.

Using the MAXQ2000 Evaluation Kit hardware

The MAXQ2000 Evaluation Kit provides a complete hardware development environment for the
MAXQ2000 microcontroller, including the following features.

• On-board power supplies for the MAXQ2000 core and VDDIO supply rails.

• Adjustable power supply (1.8V to 3.6V), which can be used for the VDDIO or VLCD
supply rails.

• Header pins for all MAXQ2000 signals and supply voltages.

• Separate LCD daughterboard connector.

• LCD daughterboard with 3V, 3.5-digit static LCD display.

A basic password-
protection scheme
restricts access to the
debugging and
bootloader functions
on the MAXQ2000.

WINDOWS
PC

RS-232
INTERFACE

SERIAL
(COM)
PORT

JTAG TAP
INTERFACE

TEST MODE SELECT

TEST CLOCK

TEST DATA IN

TEST DATA OUT

SERIAL-TO-JTAG
INTERFACE
ADAPTER

MAXQ2000

Figure 1. The serial-to-
JTAG adapter module
allows software running on
the PC to access the JTAG
TAP interface of the
MAXQ2000 microcontroller.

7

• Full RS-232 level drivers for serial 0 UART including flow control lines.

• Pushbuttons for external interrupts and microcontroller system reset.

• MAX1407 multipurpose ADC/DAC IC, connected to the MAXQ2000 SPI bus interface.

• 1-Wire® interface, including iButton® clip and 1-Wire EEPROM IC.

• Bar graph LED display for levels at port pins P0.7 to P0.0.

• JTAG interface for application load and in-system debugging.

Setting the MAXQ2000 Evaluation Kit board and the serial-to-TJAG interface modules for
application development is straightforward. Simply connect the boards by the following steps.

1) Plug a 5V DC-regulated power supply (center post positive, ±5%) into the serial-to-JTAG
board power jack J2.

2) Plug a 5V to 9V DC power supply into the MAXQ2000 Evaluation Kit board power jack J1.

3) Connect a straight-through DB9 serial cable from the serial-to-JTAG board J1 connector to
one of the COM ports on the PC.

4) Connect the JTAG adapter cable from the 1 x 9 connector P2 on the serial-to-JTAG board to
the 2 x 6 connector J4 on the MAXQ2000 Evaluation Kit board.

5) Turn both DC power supplies ON.

6) For standard operation, all DIP switches on the MAXQ2000 Evaluation Kit board should be
in the OFF position.

Application development using IAR Embedded Workbench

The IAR Embedded Workbench development environment provides C-based or assembly-based
application development for the MAXQ2000. Using the previous hardware configuration that
includes the MAXQ2000 Evaluation Kit board and the serial-to-JTAG adapter module, IAR
Embedded Workbench has full access to the JTAG-based bootloader and in-circuit debugging
features of the MAXQ2000.

IAR Embedded Workbench provides the following features when developing applications for the
MAXQ2000.

• Load compiled applications to the MAXQ2000 integrated program-flash memory.

• Step-by-step (trace) program execution at the C or assembly level.

• Display of code, data, hardware stack, and utility ROM memory.

• Call stack tracing.

• Breakpoint setting at the C or assembly level.

• View and edit of all MAXQ2000 system and peripheral registers.

Creating and compiling a project for the MAXQ2000

Because IAR Embedded Workbench includes integrated support for the MAXQ
microcontroller family, creating a new project for the MAXQ2000 microcontroller requires
only a few specific settings.

After starting IAR, select File, then New from the menu. Select Workspace from the New dialog box
and click Ok. Enter a new name for the project workspace (stored as a “.eww” file) and click Save.

With the combination of
the MAXQ2000
Evaluation Kit and the
serial-to-JTAG adapter
module, IAR Embedded
Workbench has full
access to the JTAG-
based bootloader and
in-circuit debugging
features of the
MAXQ2000.

The IAR Embedded
Workbench development
environment provides
C-based or assembly-
based application
development for the
MAXQ2000.

8

Once the workspace window opens, select
Project, then Create New Project from the
menu. The MAXQ tool chain is the default for
the new project. Enter a file name for the new
project (stored as a *.ewp file) and click Create.

Next, select Project, then Settings from the menu.
A dialog box will appear with the settings for the
newly created project, as shown in Figure 2.

In the General Options tab of the Options dialog
box, the following settings should be selected for
the MAXQ2000 microcontroller.

• Processor Variant should be set to MAXQ20,
as the MAXQ2000 has a MAXQ20-type core.

• Number of accumulators should be set to 16
for the MAXQ2000.

• Hardware stack depth should be set to 16 for
the MAXQ2000.

In the C-SPY Debugger tab of the Options dialog box, the following settings should be selected
for the MAXQ2000 (Figure 3):

• Set the Driver setting to JTAG to connect to the serial-to-JTAG interface board over a PC
COM port. The other two possible settings are Simulator (used to run with the MAXQ2000
software simulator) and Emulator (used to run with the MAXQ2000 In-Circuit Emulator
system).

• The Use Device Description File box should
be checked. The device description file (*.ddf)
should be the file provided for the MAXQ2000
microcontroller (maxq200x.ddf). This file
defines the memory spaces and peripheral
register set for a particular MAXQ micro-
controller for use by the IAR environment.

Under the JTAG section of the Options dialog
box, the Command line options field contains
the COM port of the PC used to connect to the
serial-to-JTAG board. Figure 4 shows the option
setting for connecting to COM port 1.

After setting the options for the project, select
Project, then Add Files to add a C code file to
the project. Once the project file(s) have been
added, select Project, then Make to compile the
project, followed by Project, then Debug to start
a debugging session. This downloads the
compiled project over the JTAG interface and
places IAR into debug mode, as Figure 5 shows.

Debugging operations in IAR

Once the debugging session has started, Step Over (F10), Step Into (F11), and Step Out
(Shift+F11) can be used to trace through the C code of the project. To run code, select Debug,
then Go from the menu, or hit F5.

Figure 2. The General
Options section of the
Options dialog allows the
user to specify the
processor core type
(MAXQ10/20), the number
of accumulators available,
and the hardware stack
depth. The settings shown
are for the MAXQ2000.

Figure 3. The C-SPY
Debugger section of the
Options dialog allows the
user to specify settings for
debugging sessions. The
settings shown are for
debugging the MAXQ2000
using the serial-to-JTAG
adapter module.

Address breakpoints can be set or cleared by placing
the cursor on a line of source code and clicking the
Toggle Breakpoint button in the toolbar. Up to four
address breakpoints can be set at once.

The Memory window can be used to display the
Code (internal flash memory), Data (internal
SRAM), Hw stack (internal 16-level stack), and
utility ROM memories of the MAXQ2000. The
memory display can be set to byte, word, or
doubleword format, and displays in both hex (for all
widths) and ASCII (for byte width) formats.

The Register window displays the system and
peripheral registers for the MAXQ2000. These are
displayed in logical groups.

• CPU Registers: Accumulator and accumulator
control registers, data pointers and data pointer
control registers, instruction pointer, loop
counter, and program status flags.

• Interrupt Control: Interrupt vector, module mask, and identification registers.

• Cycles: Displays the number of instruction cycles that have executed.

• Parallel Ports: Input, output, and port direction registers for P0 to P4.

• External Interrupt: Enable, edge select, and flag registers for external interrupts.

• Timers: Registers for timer/counters 0 to 2.

• Serial Port: Control and buffer registers for the
SPI and serial ports.

• Multiplier: Registers related to the hardware
multiplier module.

Writeable registers can be edited by clicking on the
register value and entering a new value. Display of
the individual bits or bit fields within registers can
be expanded or collapsed by clicking the
plus/minus sign next to the register name.

Conclusion

The high-level, C-project-based environment of
IAR Embedded Workbench integrates with the
MAXQ2000’s low-level debugging interface to
allow fine-tuned debugging at either the C or
assembly code levels. The MAXQ2000’s built-in
debugging and in-circuit programming features, and
their low-level impact on system resources, allow the same hardware design to be used for
both the application development process and for the final release of the finished project.

1-Wire and iButton are registered trademarks of Dallas Semiconductor.

9

Figure 5. Using the
serial-to-JTAG adapter
module, IAR Embedded
Workbench can perform
step-by-step execution on
the MAXQ2000, as well as
read and modify on-chip
memory and register
values.

Figure 4. The C-SPY
Debugger (JTAG) section
of the Options dialog
allows the user to change
settings specific to the
serial-to-JTAG adapter
module. The settings
shown are for a serial-to-
JTAG adapter connected
to the PC port COM1.

